4. Cambridge Assessment
< ¥ International Education

Pseudocode Guide for Teachers

Cambridge International
AS & A Level
Computer Science 9618

Use this guide for exams in 2026.

Version 1

For the purposes of screen readers, any mention in this document of Cambridge IGCSE Cambrldge D
refers to Cambridge International General Certificate of Secondary Education. Pathway

Quality management

Cambridge International is committed to providing exceptional quality. In line with this commitment, our
quality management system for the provision of international education programmes and qualifications
programmes for students aged 5 to 19 is independently certified as meeting the internationally recognised
standard, ISO 9001:2015. Learn more at www.cambridgeinternational.org/about-us/our-standards/

© Cambridge University Press & Assessment September 2023
Cambridge Assessment International Education is part of Cambridge University Press & Assessment. Cambridge University Press &
Assessment is a department of the University of Cambridge.

Cambridge University Press & Assessment retains the copyright on all its publications. Registered centres are permitted to copy
material from this booklet for their own internal use. However, we cannot give permission to centres to photocopy any material that is
acknowledged to a third party even for internal use within a centre.

Contents

1 Pseudocode in examined componentsccoooiiiiiiiiii i
1.1 Font style and size
1.2 Indentation
1.3 Case
1.4 Lines and line numbering

1.5 Comments

2 Variables, constants and data types....................oooi
2.1 Data Types
2.2 Literals
2.3 ldentifiers
2.4 Variable declarations
2.5 Constants

2.6 Assignments

3.1 Declaring arrays

3.2 Using arrays

4 User-defined data types...........ccooooiiiiiii

4.1 Defining user-defined data types
4.2 Using user-defined data types

5 CommON OPEratioONSoooiiiiiiii s
5.1 Input and output
5.2 Arithmetic operations
5.3 Relational operations
5.4 Logic operators
5.5 String functions and operations

5.6 Numeric functions

B Sl ON ...

6.1 IF statements
6.2 CASE statements

D OO O o O

© 0 0 N N N

10
10

12
14

15
15
16
16
16
17

7 Iteration (repetition) ...

7.1 Count-controlled (FOR) loops
7.2 Post-condition (REPEAT) loops
7.3 Pre-condition (WHILE) loops

8 Procedures and fUNCHIONSoooiiii s

8.1 Defining and calling procedures
8.2 Defining and calling functions

8.3 Passing parameters by value or by reference

O File handling ..o
9.1 Handling text files

9.2 Handling random files

10 Object-oriented Programmingccccciiiiiiii

10.1 Methods and Properties
10.2 Constructors and Inheritance

Index of symbols and KeyWords................coooiiiiiiiii s

20
20
21

22
23
24

25
26

28
28

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.

1 Pseudocode in examined components

The following information sets out how pseudocode will appear within the examined components and is
provided to allow you to give learners familiarity before the exam.

1.1 Font style and size

Pseudocode is presented in a monospaced (fixed-width) font such as Couri er New The size of the font will
be consistent throughout.

1.2 Indentation

Lines are indented (usually by three spaces) to indicate that they are contained within a statement in a previous
line. In cases where line numbering is used, this indentation may be omitted. Every effort will be made to

make sure that code statements are not longer than a line of text unless this is absolutely necessary. Where
necessary, continuation lines will be aligned to maximise readability.

1.3 Case

Keywords are in upper-case, e.g. | F, REPEAT, PROCEDURE. (Different keywords are explained in later sections
of this guide.)

Identifiers are in mixed case (sometimes referred to as camelCase or Pascal case) with upper-case letters
indicating the beginning of new words, for example Number Of Pl ayer s.

Meta-variables — symbols in the pseudocode that should be substituted by other symbols are enclosed in
angled brackets < > (as in Backus-Naur Form). This is also used in this guide.

Example — meta-variables
REPEAT

<st at enent (s) >
UNTI L <condition>

Back to contents page www.cambridgeinternational.org/alevel 5

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
Pseudocode in examined components

1.4 Lines and line numbering

Where it is necessary to number the lines of pseudocode so that they can be referred to, line numbers are
presented to the left of the pseudocode with sufficient space to indicate clearly that they are not part of the
pseudocode statements.

Line numbers are consecutive, unless numbers are skipped to indicate that part of the code is missing. This will
also be clearly stated.

Each line representing a statement is numbered. However, when a statement runs over one line of text, the
continuation lines are not numbered.

1.5 Comments

Comments are preceded by two forward slashes /. The comment continues until the end of the line. For
multi-line comments, each line is preceded by /.

Normally the comment is on a separate line before, and at the same level of indentation as, the code it refers
to. Occasionally, however, a short comment that refers to a single line may be at the end of the line to which it
refers.

Example - comments

/1 this procedure swaps

/1 values of X and Y

PROCEDURE SWAP(BYREF X : | NTEGER, Y : | NTEGER)
Temp <« X // tenporarily store X
X <«Y
Y <« Tenp

ENDPRCOCEDURE

Back to contents page www.cambridgeinternational.org/alevel 6

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.

2 Variables, constants and data types

2.1 Data Types

The following keywords are used to designate some basic data types:

e INTEGER a whole number

o REAL a number capable of containing a fractional part
e CHAR a single character

e STRING a sequence of zero or more characters

e BOOLEAN the logical values TRUE and FALSE

o DATE a valid calendar date

2.2 Literals

Literals of the above data types are written as follows:

e Integer Written as normal in the denary system, e.g. 5, -3

e Real Always written with at least one digit on either side of the decimal point, zeros being added if
necessary,e.g. 4.7, 0.3, -4.0, 0.0

e Char A single character delimited by single quotese.g. 'x', 'C', '@’

e String Delimited by double quotes. A string may contain no characters (i.e. the empty string)

eg."This is a string",
e Boolean TRUE, FALSE

e Date This will normally be written in the format dd/ nm1 yyyy. However, it is good practice to state
explicitly that this value is of data type DATE and to explain the format (as the convention for
representing dates varies across the world).

2.3 ldentifiers

Identifiers (the names given to variables, constants, procedures and functions) are in mixed case. They can only
contain letters (A-Z, a—z), digits (0-9) and the underscore character (_). They must start with a letter and not a
digit. Accented letters should not be used.

It is good practice to use identifier names that describe the variable, procedure or function they refer to. Single
letters may be used where these are conventional (such asi andj when dealing with array indices, or Xand Y
when dealing with coordinates) as these are made clear by the convention.

Keywords identified elsewhere in this guide should never be used as variable names.

Identifiers should be considered case insensitive, for example, Count down and Count Down should not be
used as separate variable names.

Back to contents page www.cambridgeinternational.org/alevel 7

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
Variables, constants and data types

2.4 Variable declarations

It is good practice to declare variables explicitly in pseudocode.
Declarations are made as follows:

DECLARE <identifier> : <data type>

Example - variable declarations
DECLARE Counter : | NTEGER

DECLARE Tot al ToPay : REAL
DECLARE GaneOver : BOOLEAN

2.5 Constants

It is good practice to use constants if this makes the pseudocode more readable, as an identifier is more
meaningful in many cases than a literal. It also makes the pseudocode easier to update if the value of the
constant changes.

Constants are normally declared at the beginning of a piece of pseudocode (unless it is desirable to restrict the
scope of the constant).

Constants are declared by stating the identifier and the literal value in the following format:

CONSTANT <identifier> = <value>

Example - constant declarations

CONSTANT HourlyRate = 6.50
CONSTANT DefaultText = "N/A"

Only literals can be used as the value of a constant. A variable, another constant or an expression must never
be used.

Back to contents page www.cambridgeinternational.org/alevel 8

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
Variables, constants and data types

2.6 Assignments

The assignment operator is <« .
Assignments should be made in the following format:
<identifier> <« <val ue>

The identifier must refer to a variable (this can be an individual element in a data structure such as an array or a
user defined data type). The value may be any expression that evaluates to a value of the same data type as the
variable.

Example - assignments
Counter « O

Counter « Counter + 1
Tot al ToPay <« Nunber Of Hours * Hourl yRate

Back to contents page www.cambridgeinternational.org/alevel 9

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.

3 Arrays

Syllabus requirements

The Cambridge International AS & A Level syllabus (9618) requires candidates to understand and use both
one-dimensional and two-dimensional arrays.

3.1 Declaring arrays

Arrays are considered to be fixed-length structures of elements of identical data type, accessible by
consecutive index (subscript) numbers. It is good practice to explicitly state what the lower bound of the array
(i.e. the index of the first element) is because this defaults to either O or 1 in different systems. Generally, a lower
bound of 1 will be used.

Square brackets are used to indicate the array indices.

A one-dimensional array is declared as follows:

DECLARE <identifier>:ARRAY [<lower>:<upper>] OF <data type>

A two-dimensional array is declared as follows:

DECLARE <identifier>:ARRAY [<lowerl>:<upperl>,<lower2>:<upperz>]
CF <data type>

Example - array declarations

DECLARE StudentNames : ARRAY[1:30] OF STRING
DECLARE NoughtsAndCrosses : ARRAY[1:3,1:3] OF CHAR

3.2 Using arrays

Array index values may be literal values or expressions that evaluate to a valid integer value.

Example - accessing individual array elements
StudentNames[1l] « "Ali"

NoughtsAndCrosses[2,3] <« 'X!
StudentNames [n+l] <« StudentNames|[n]

Back to contents page www.cambridgeinternational.org/alevel 10

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
Variables, constants and data types

Arrays can be used in assignment statements (provided they have same size and data type). The following is
therefore allowed:

Example - accessing a complete array

SavedGnme <« Nought sAndCr osses

A statement should not refer to a group of array elements individually. For example, the following construction
should not be used.

StudentNames [1 TO 30] « ""
Instead, an appropriate loop structure is used to assign the elements individually. For example:

Example - assigning a group of array elements

FOR Index « 1 TO 30
StudentNames [Index] « ""
NEXT Index

Back to contents page www.cambridgeinternational.org/alevel 11

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.

4 User-defined data types

Syllabus requirements

The Cambridge International AS & A Level syllabus (9618) requires candidates to understand that data
structures that are not available in a particular programming language need to be constructed from the data
structures that are built-in within the language. User-defined data types need to be defined. The syllabus
requires candidates to use and define non-composite data types such as enumerated and pointer and

composite data types such as record, set, class/object. Abstract Data Types (ADTs) stack, queue, linked
list, dictionary and binary tree are also defined as composite data types.

4.1 Defining user-defined data types

Non-composite data type: enumerated

A user-defined non-composite data type with a list of possible values is called an enumerated data type. The
enumerated type should be declared as follows:

TYPE <identifier> = (valuel, value2, value3, ...)

Example - declaration of enumerated type
This enumerated type holds data about seasons of the year.
TYPE Season = (Spring, Summer, Autumn, Winter)

Non-composite data type: pointer

A user-defined non-composite data type referencing a memory location is called a pointer. The pointer should
be declared as follows:

TYPE <identifier> = "<data type>

The ~ shows that the variable is a pointer and the data type indicates the type of the data stored in the memory
location.

Example - declarations of pointer type

TYPE TIntPointer = "~INTEGER
TYPE TCharPointer = "~CHAR

Declaration of a variable of pointer type does not require the ~ (caret) symbol to be used.

Example - declaration of a pointer variable

DECLARE MyPoi nter : TIntPointer

Back to contents page www.cambridgeinternational.org/alevel 12

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
User-defined data types

Composite data type

A composite data type is a collection of data that can consist of one or more data types, grouped under one
identifier.

Composite data type — Record
The record composite data type should be declared as follows:

TYPE <identifierl>
DECLARE <identifier2> : <data type>
DECLARE <identifier3> : <data type>
ENDTYPE
Example - declaration of Record data type

This user-defined data type holds data about a student.

TYPE St udent Record
DECLARE Last Nane : STRI NG
DECLARE FirstNane : STRI NG
DECLARE DateOrBirth : DATE
DECLARE Year Group : | NTEGER
DECLARE Fornmzroup : CHAR
ENDTYPE

Composite data type — Set
The set composite data type should be declared as follows:

TYPE <identifierl> = SET OF <data type>
DEFINE <identifier2> (valuel, value2, value, ..) : <identifierl>

Example - declaration of Set data type
This user-defined data type holds data about vowels.

TYPE LetterSet = SET OF CHAR
DEFINE Vowels ("A,'E,'"I',"0,"U): LetterSet

Back to contents page www.cambridgeinternational.org/alevel 13

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
User-defined data types

4.2 Using user-defined data types

When a user-defined data type has been defined it can be used in the same way as any other data type in
declarations.

Variables of a user-defined data type can be assigned to each other. Individual data items are accessed using
dot notation.

Example - using user-defined data types

This pseudocode uses the user-defined types St udent Recor d, Season and Tl nt Poi nt er defined in the
previous section.

DECLARE Pupil 1l : StudentRecord

DECLARE Pupil2 : StudentRecord

DECLARE Form : ARRAY[1:30] OF StudentRecord
DECLARE Thi sSeason : Season

DECLARE NextSeason : Season

DECLARE MyPoi nter : TIntPointer

1. Last Name « "Johnson"

1. Firstname « "Leroy"

Pupil 1. DateOBirth « 02/01/2005
i1l YearGoup « 6

1. FormGroup « 'A!

Pupil2 <« Pupill

FOR Index « 1 TO 30
Form[Index] .YearGroup < Form[Index].YearGroup + 1
NEXT Index

Thi sSeason <« Spring

MyPoi nter <« “~ThisSeason

NextSeason <« MyPointer”™ + 1

/| access the value stored at the nenory address

Back to contents page www.cambridgeinternational.org/alevel 14

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.

5 Common operations

5.1 Input and output

Values are input using the INPUT command as follows:
INPUT <identifier>

The identifier should be a variable (that may be an individual element of a data structure such as an array, or a
custom data type).

Values are output using the OUTPUT command as follows:
QUTPUT <val ue(s) >

Several values, separated by commas, can be output using the same command.

Example - | NPUT and OQUTPUT statements
I NPUT Answer

QUTPUT Scor e
QUTPUT "You have ", Lives, " lives left"

5.2 Arithmetic operations

Standard arithmetic operator symbols are used:

+ Addition

— Subtraction

* Multiplication

/ Division (The resulting value should be of data type REAL, even if the operands are integers.)

DIV Integer division: Used to find the quotient (integer number before the decimal point) after division.
MOD or Modulus: The remainder that is left over when one number is divided by another.
Multiplication and division have higher precedence over addition and subtraction (this is the normal

mathematical convention). However, it is good practice to make the order of operations in complex expressions
explicit by using parentheses.

Back to contents page www.cambridgeinternational.org/alevel 15

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
Common operations

5.3 Relational operations

The following symbols are used for relational operators (also known as comparison operators):
> Greater than

< Lessthan

>= Greater than or equal to

<= Less than or equal to

= FEqualto

<> Not equal to

The result of these operations is always of data type BOOLEAN.

In complex expressions it is advisable to use parentheses to make the order of operations explicit.

5.4 Logic operators

The only logic operators (also called relational operators) used are AND, OR and NOT. The operands and results
of these operations are always of data type BOCOLEAN.

In complex expressions it is advisable to use parentheses to make the order of operations explicit.

5.5 String functions and operations

Syllabus requirements
The Cambridge International AS & A Level syllabus (9618) specifically requires candidates to know string

manipulation functions in their chosen programming language. Pseudocode string manipulation functions
will always be provided in examinations. Some basic string manipulation functions are given here.

Each function returns an error if the function call is not properly formed.

RIGHT (ThisString : STRING, x : INTEGER) RETURNS STRING
returns rightmost x characters from Thi sStri ng

Example: RI GHT(" ABCDEFGH', 3) returns " FGH'
LENGTH(Thi sString : STRING RETURNS | NTECER
returns the integer value representing the length of Thi sStri ng

Example: LENGTH "Happy Days") returns 10

Back to contents page www.cambridgeinternational.org/alevel 16

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
Common operations

MID(ThisString : STRING, x : INTEGER, y : INTEGER) RETURNS STRING
returns a string of length y starting at position x from Thi sStri ng

Example: M 00" ABCDEFCH', 2, 3) returns " BCD'

LCASE(Thi sChar : CHAR) RETURNS CHAR

returns the character value representing the lower-case equivalent of Thi sChar

If Thi sChar is not an upper-case alphabetic character, it is returned unchanged.
Example: LCASE('W') returns 'w'

UCASE(Thi sChar : CHAR) RETURNS CHAR

returns the character value representing the upper-case equivalent of Thi sChar

If Thi sChar is not a lower-case alphabetic character, it is returned unchanged.

Example: UCASE('h') returns 'H'

In pseudocode, the operator & is used to concatenate (join) two strings.
Example: “Summer” & “ “ & “Pudding” produces “Summer Pudding”

Where string operations (such as concatenation, searching and splitting) are used in a programming language,
these should be explained clearly, as they vary considerably between systems.

Where functions in programming languages are used to format numbers as strings for output, their use should
also be explained.

5.6 Numeric functions

INT (x : REAL) RETURNS INTEGER
returns the integer part of x

Example: | NT(27. 5415) returns 27
RAND (x : INTEGER) RETURNS REAL
returns a random real number in the range 0 to x (not inclusive of x)

Example: RANX 87) may return 35. 43

Back to contents page www.cambridgeinternational.org/alevel 17

Back to contents page

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.

6 Selection

6.1 IF statements

| F statements may or may not have an ELSE clause.
| F statements without an else clause are written as follows:

| F <condition> THEN
<statenent(s)>
ENDI F

| F statements with an else clause are written as follows:

| F <condi ti on> THEN
<statenent(s)>
ELSE
<st at enent (s) >
ENDI F

Note, due to space constraints, the THEN and ELSE clauses may only be indented by two spaces rather than
three. (They are, in a sense, a continuation of the | F statement rather than separate statements).

Example - nested | F statements

| F Chal | enger Score > Chanpi onScore THEN
| F Chal | enger Score > Hi ghest Score THEN

QUTPUT Chal | enger Nanme, " is chanpion and hi ghest scorer"
ELSE
QUTPUT Chal | enger Nane, " is the new chanpi on”
ENDI F
ELSE
QUTPUT Chanpi onName, " is still the chanpi on”
| F Chanpi onScore > Hi ghest Score THEN
QUTPUT Chanpi onNane, " is also the highest scorer"
ENDI F
ENDI F

www.cambridgeinternational.org/alevel

18

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
Selection

6.2 CASE statements

CASE statements allow one out of several branches of code to be executed, depending on the value of a
variable.

CASE statements are written as follows:
CASE OF <identifier>
<val ue 1> : <statenentl1>
<statement2>
<value 2> : <statementl>
<statement2>
ENDCASE
An OTHERW SE clause can be the last case:
CASE OF <identifier>
<val ue 1> : <statenent1>

<statement2>

<value 2> : <statementl>
<statement2>

OTHERW SE : <st at enent 1>
<statement2>

ENDCASE
Each value may be represented by a range, for example:
<valuel> TO <value2> : <statementl>

<statement2>

Note that the CASE clauses are tested in sequence. When a case that applies is found, its statement is
executed and the CASE statement is complete. Control is passed to the statement after the ENDCASE. Any
remaining cases are not tested.

If present, an OTHERW SE clause must be the last case. Its statement will be executed if none of the preceding
cases apply.

Example - formatted CASE statement

| NPUT Mbve

CASE OF Move
'W' : Position <« Position - 10
'S'" : Position <« Position + 10
'A'" : Position <« Position - 1
'D' : Position « Position + 1
OTHERW SE : CALL Beep

ENDCASE

Back to contents page www.cambridgeinternational.org/alevel 19

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.

7 Iteration (repetition)

71 Count-controlled (FOR) loops

Count-controlled loops are written as follows:

FOR <identifier> <« <valuel> TO <value2>
<st at enent (s) >
NEXT <identifier>

The identifier must be a variable of data type | NTEGER, and the values should be expressions that evaluate to
integers.

The variable is assigned each of the integer values from val uel to value?2 inclusive, running the statements
inside the FOR loop after each assignment. If valuel = value?2 the statements will be executed once, and if
valuel > value2 the statements will not be executed.

It is good practice to repeat the identifier after NEXT, particularly with nested FOR loops.
An increment can be specified as follows:

FOR <identifier> <« <valuel> TO <value2> STEP <increment>
<statenent(s)>
NEXT <identifier>

The increment must be an expression that evaluates to an integer. In this case the identifier will be assigned
the values from val uel in successive increments of i ncr ement until it reaches value?. If it goes past
value?, the loop terminates. The i ncr ement can be negative.

Example - nested FOR loops

Total < O
FOR Row <« 1 TO MaxRow
RowTotal <« O
FOR Columm « 1 TO 10
RowTot al <« RowTotal + Amount[Row, Column]

NEXT Col um
QUTPUT "Total for Row ", Row, " is ", RowTotal
Total <« Total + RowTot al

NEXT Row

QUTPUT "The grand total is ", Total

7.2 Post-condition (REPEAT) loops

Post-condition loops are written as follows:
REPEAT

<st at ement (s) >
UNTI L <condition>

Back to contents page www.cambridgeinternational.org/alevel 20

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
lteration (repetition)

The condition must be an expression that evaluates to a Boolean.

The statements in the loop will be executed at least once. The condition is tested after the statements are
executed and if it evaluates to TRUE the loop terminates, otherwise the statements are executed again.

Example - REPEAT UNTI L loop

REPEAT
QUTPUT "Pl ease enter the password"
| NPUT Password

UNTIL Password = "Secret"

7.3 Pre-condition (WHILE) loops

Pre-condition loops are written as follows:
VWHI LE <condi tion>

<st at ement (s) >
ENDVHI LE

The condition must be an expression that evaluates to a Boolean.

The condition is tested before the statements, and the statements will only be executed if the condition
evaluates to TRUE. After the statements have been executed the condition is tested again. The loop terminates
when the condition evaluates to FALSE.

The statements will not be executed if, on the first test, the condition evaluates to FALSE.

Example - WHILE loop
VWHI LE Nunber > 9

Nunber <« Nunber - 9
ENDVWHI LE

Back to contents page www.cambridgeinternational.org/alevel 21

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.

8 Procedures and functions

Syllabus requirements

The definition and use of procedures and functions is explicitly required in the Cambridge International
AS & A Level syllabus (9618). Any pseudocode functions used in an examination will be defined.

8.1 Defining and calling procedures

A procedure with no parameters is defined as follows:

PROCEDURE <identifier> ()
<statenment(s)>

ENDPROCEDURE

A procedure with parameters is defined as follows:

PROCEDURE <identifier> (<paraml> : <data type>, <param2> : <data type>...)
<statenment(s)>

ENDPROCEDURE

The <identifier> is the identifier used to call the procedure. Where used, par anil, param?2 etc. are

identifiers for the parameters of the procedure. These will be used as variables in the statements of the

procedure.

Procedures defined as above should be called as follows, respectively:

CALL <identifier> ()

CALL <identifier>(valuel, wvalue2, ...)

These calls are complete program statements.

When parameters are used, val uel, value2... must be of the correct data type and in the same sequence
as in the definition of the procedure.

Unless otherwise stated, it should be assumed that parameters are passed by value. (See section 8.3).

Back to contents page www.cambridgeinternational.org/alevel 22

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
Procedures and functions

Example - definition and use of procedures with and without parameters

PROCEDURE Def aul t Squar e()
CALL Square(100)
ENDPROCEDURE

PROCEDURE Squar e(Si ze : | NTEGER)
FOR Side « 1 TO 4
CALL MoveForward(Si ze)
CALL Turn(90)
NEXT Si de
ENDPRCOCEDURE

IF Size = Default THEN
CALL Def aul t Squar e()
ELSE
CALL Square(Size)
ENDI F

8.2 Defining and calling functions

Functions operate in a similar way to procedures, except that in addition they return a single value to the point
at which they are called. Their definition includes the data type of the value returned.

A function with no parameters is defined as follows:

FUNCTION <identifier>() RETURNS <data type>
<st at enent (s) >
ENDFUNCTI ON

A function with parameters is defined as follows:

FUNCTION <identifier> (<paraml> : <data type>,
<param2> : <data type>...) RETURNS <data type>
<st at enent (s) >
ENDFUNCTI ON

The keyword RETURN is used as one of the statements within the body of the function to specify the value to
be returned. Normally, this will be the last statement in the function definition, however, if the RETURN statement
is in the body of the function its execution is immediate and any subsequent lines of code are omitted.

Because a function returns a value that is used when the function is called, function calls are not complete
program statements. The keyword CALL should not be used when calling a function. Functions should only
be called as part of an expression. When the RETURN statement is executed, the value returned replaces the
function call in the expression and the expression is then evaluated.

Back to contents page www.cambridgeinternational.org/alevel 23

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
Procedures and functions

Example - definition and use of a function

FUNCTION Max (Numberl : INTEGER, Number?2 : INTEGER) RETURNS INTEGER
IF Numberl > Number?2 THEN
RETURN Nunber 1
ELSE
RETURN Number?2
ENDI F
ENDFUNCTI ON

OUTPUT "Penalty Fine = ", Max (10, Distance*2)

8.3 Passing parameters by value or by reference

To specify whether a parameter is passed by value or by reference, the keywords BYVAL and BYREF precede
the parameter in the definition of the procedure. If there are several parameters passed by the same method,
the BYVAL or BYREF keyword need not be repeated.

Example - passing parameters by reference

PROCEDURE SWAP(BYREF X : |INTEGER, Y : | NTECGER)
Temp « X
X<«Y
Y « Tenp

ENDPROCEDURE

If the method for passing parameters is not specified, passing by value is assumed. How this should be called
and how it operates has already been explained in Section 8.1.

Parameters should not be passed by reference to a function.

Back to contents page www.cambridgeinternational.org/alevel 24

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.

9 File handling

9.1 Handling text files

Text files consist of lines of text that are read or written consecutively as strings.
A file must be opened in a specified mode before any file operations are attempted. This is written as follows:
OPENFILE <file identifier> FOR <file mode>

The file identifier may be a literal string containing the file names, or a variable of type STRI NGthat has been
assigned the file name.

The following file modes are used:

e READ for data to be read from the file

e WRITE for data to be written to the file. A new file will be created and any existing data in the file will
be lost.

e APPEND for data to be added to the file, after any existing data.
A file should be opened in only one mode at a time.

Data is read from the file (after the file has been opened in READ mode) using the READFI LE command as
follows:

READFILE <file identifier>, <variable>

The vari abl e should be of data type STRI NG When the command is executed, the next line of text in the file
is read and assigned to the variable.

The function ECF is used to test whether there are any more lines to be read from a given file. It is called as
follows:

EOF (<file identifier>)

This function returns TRUE if there are no more lines to read (or if an empty file has been opened in READ
mode) and FALSE otherwise.

Data is written into the file (after the file has been opened in WRI TE or APPEND mode) using the WRI TEFI LE
command as follows:

WRITEFILE <file identifier>, <data>
Files should be closed when they are no longer needed using the CLOSEFI LE command as follows;

CLOSEFILE <file identifier>

Back to contents page www.cambridgeinternational.org/alevel 25

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.

Example - handling text files

File handling

This example uses the operations together, to copy all the lines from FileA.txt to FileB.txt, replacing
any blank lines by a line of dashes.

DECLARE LineOfText STRING
OPENFILE "FileA.txt" FOR READ
OPENFILE "FileB.txt" FOR WRITE
WHILE NOT EOF ("FileA.txt")

Back to contents page

READFILE "FileA.txt", LineOfText

IF LineOfText = "" THEN
WRITEFILE "FileB.txt", " —————————m—mmmmmmmmmmmo "
ELSE
WRITEFILE "FileB.txt", LineOfText
ENDI F
ENDVWHI LE

CLOSEFILE "FileA.txt"
CLOSEFILE "FileB.txt"

9.2 Handling random files

Random files contain a collection of data, normally as records of fixed length. They can be thought of as having
a file pointer which can be moved to any location or address in the file. The record at that location can then be
read or written.

Random files are opened using the RANDOM(ile mode as follows:

OPENFILE <file identifier> FOR RANDOM

As with text files, the file identifier will normally be the name of the file.

The SEEK command moves the file pointer to a given location:

SEEK <file identifier>, <address>

The address should be an expression that evaluates to an integer which indicates the location of a record to be
read or written. This is usually the number of records from the beginning of the file. It is good practice to explain
how the addresses are computed.

The command GETRECORD should be used to read the record at the file pointer:

GETRECORD <file identifier>, <variable>

When this command is executed, the record that is read is assigned to the variable which must be of the
appropriate data type for that record (usually a user-defined type).

www.cambridgeinternational.org/alevel 26

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
File handling

The command PUTRECCORD is used to write a record into the file at the file pointer:
PUTRECORD <file identifier>, <variable>

When this command is executed, the data in the variable is inserted into the record at the file pointer. Any data
that was previously at this location will be replaced.

Example - handling random files

The records from positions 10 to 20 of a file St udent Fi | e. Dat are moved to the next position and a new
record is inserted into position 10. The example uses the user-defined type St udent defined in Section 4.1.

DECLARE Pupil : Student
DECLARE NewPupi |l : Student
DECLARE Position : | NTEGER

NewPupil.LastName ~ "Johnson"
NewPupil.Firstname — "Leroy"
NewPupil.DateOfBirth — 02/01/2005
NewPupil.YearGroup « 6
NewPupil.FormGroup ~ 'A'

OPENFI LE "StudentFil e. Dat" FOR RANDOM
FOR Position « 20 TO 10 STEP -1
SEEK "StudentFile.Dat", Position
GETRECORD " StudentFile. Dat", Pupil
SEEK "StudentFile.Dat", Position + 1
PUTRECORD "StudentFile.Dat", Pupil
NEXT Position

SEEK "StudentFile.Dat", 10
PUTRECORD " St udent Fil e. Dat", NewPupi |

CLCSEFI LE "StudentFil e. dat™

Back to contents page www.cambridgeinternational.org/alevel 27

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.

10 Object-oriented Programming

101 Methods and Properties

Methods and properties can be assumed to be public unless otherwise stated. Where the access level is
relevant to the question, it will be explicit in the code using the keywords PUBLI C or PRI VATE.

Example code

PRI VATE Attenpts : | NTEGER
Attenpts « 3

PUBLI C PROCEDURE Set Att enpt s(Nunmber : | NTEGER)
Attenmpts <« Nunber
ENDPROCEDURE

PRI VATE FUNCTI ON Cet Attenpt s() RETURNS | NTEGER
RETURN Attenpts
ENDFUNCTI ON

Methods will be called using object methods, for example:

Player.SetAttempts (5)
QUTPUT Pl ayer. Get Attenpt s()

10.2 Constructors and Inheritance

Constructors will be procedures with the name NEW

CLASS Pet
PRI VATE Nane : STRI NG
PUBLI C PROCEDURE NEW G venNane : STRI NG
Name <« G venName
ENDPROCEDURE
ENDCLASS

Inheritance is denoted by the | NHERI TS keyword; superclass/parent class methods will be called using the
keyword SUPER, for example:

CLASS Cat | NHERI TS Pet
PRI VATE Breed: | NTEGER
PUBLI C PROCEDURE NEW G venNanme : STRING GG venBreed : STRI NG
SUPER. NEW G venNane)
Breed « G venBreed
ENDPROCEDURE
ENDCLASS

Back to contents page www.cambridgeinternational.org/alevel 28

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.
Object-oriented Programming

To create an object, the following format is used:

<obj ect nanme> <« NEW <class name> (<paraml>, <param2> ...)

For example:

MyCat < NEW Cat ("Kitty", "Shorthaired")

Back to contents page www.cambridgeinternational.org/alevel 29

Index of symbols and keywords

-, 1o
<, 10
*, 16
/, 16
1, 7
+, 16
<, 17
<=, 17
<> 17
=, 17
> 17
>=, 17
& 18
AND, 17
APPEND,

ARRAY, 11
BOOLEAN, 8
BYREF, 25
BYVAL, 25

CALL, 23
CASE OF,
CHAR, 8

CLASS, 29
CLOSEFILE,
CONSTANT, 9

DATE, 8

DECLARE, 9

DIV, 16
ELSE, 19
ENDCASE,

ENDCLASS,
ENDFUNCTION,
ENDI F, 19
ENDPROCEDURE,
ENDTYPE, 14
ENDWHILE,

EOF, 26
FALSE, 8
FOR

FOR (file handling),
FUNCTION,

Back to contents page

(caret),

GETRECORD, 27
IF, 19
INHERITS, 29
INPUT, 16

I NT, 18

| NTEGER, 8
LCASE, 18
LENGTH, 17
MD, 18

MOD, 16

NEXT, 21

NEW, 29

NOT, 17
OPENFILE, 26
or 17
OTHERWISE, 20
OUTPUT, 16
PROCEDURE, 23
PRIVATE, 29
PUBLIC, 29
PUTRECORD, 28
RAND, 18
RANDOM (files),
READ, 26
READFILE, 26
REAL, 8
REPEAT, 21
RETURN, 24
RETURNS, 24
Rl GHT, 17
SEEK, 27
STEP, 21

STRI NG, 8
SUPER, 29
THEN, 19
TRUE, 8

TYPE, 13
UCASE, 18
UNTIL, 21
WHILE, 22
WRITE, 26
WRITEFILE, 26

www.cambridgeinternational.org/alevel

27

Cambridge International AS & A Level Computer Science 9618 Pseudocode Guide for Teachers for 2026.

30

We are committed to making our documents accessible in accordance with the WCAG 2.1 Standard. We are always looking to improve
the accessibility of our documents. If you find any problems or you think we are not meeting accessibility requirements, contact us at
info@cambridgeinternational.org with the subject heading: Digital accessibility. If you need this document in a different format, contact
us and supply your name, email address and requirements and we will respond within 15 working days.

Cambridge Assessment International Education, The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 (0)1223 553554 email: info@cambridgeinternational.org www.cambridgeinternational.org

© Cambridge University Press & Assessment September 2023

	1 Pseudocode in examined components
	1.1 Font style and size
	1.2 Indentation
	1.3 Case
	1.4 Lines and line numbering
	1.5 Comments

	2 Variables, constants and data types
	2.1 Data Types
	2.2 Literals
	2.3 Identifiers
	2.4 Variable declarations
	2.5 Constants
	2.6 Assignments

	3 Arrays
	3.1 Declaring arrays
	3.2 Using arrays

	4 User-defined data types
	4.1 Defining user-defined data types
	4.2 Using user-defined data types

	5 Common operations
	5.1 Input and output
	5.2 Arithmetic operations
	5.3 Relational operations
	5.4 Logic operators
	5.5 String functions and operations
	5.6 Numeric functions

	6 Selection
	6.1 IF statements
	6.2 CASE statements

	7 Iteration (repetition)
	7.1 Count-controlled (FOR) loops
	7.2 Post-condition (REPEAT) loops
	7.3 Pre-condition (WHILE) loops

	8 Procedures and functions
	8.1 Defining and calling procedures
	8.2 Defining and calling functions
	8.3 Passing parameters by value or by reference

	9 File handling
	9.1 Handling text files
	9.2 Handling random files

	10 Object-oriented Programming
	10.1 Methods and Properties
	10.2 Constructors and Inheritance

	Index of symbols and keywords

